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Proper orthogonal decomposition (POD) methods are popular tools for data analysis
aimed at obtaining low-dimensional approximate descriptions of a high-dimensional
process in many engineering "elds. The applications of POD methods to model reduction
for microelectromechanical systems (MEMS) are reviewed in this paper. In view of the fact
that existing POD methods in the model reduction for dynamic simulation of MEMS dealt
with only noise-free data, this paper proposes a neural-network-based method that
combines robust principal component analysis (PCA) neural network model with Galerkin
procedure for dynamic simulation and analysis of non-linear MEMS with noisy data.
Simulations are given to show the performance of the proposed method in comparison with
the existing method. Compared with the standard PCA neural network model, the robust
PCA neural network model has a number of numerical advantages such as the stability and
robustness to noise-injected data and the faster convergence of iterations in the training
stages than the existing neural network technique. The macro-model generated by using the
eigenvectors extracted from the proposed method as basis functions shows its #exibility and
e$ciency in the representation and simulation of the original non-linear partial di!erential
equations.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Proper orthogonal decomposition (POD) is an important and essential technique for data
reduction, image compression, and feature extraction. It has been widely used in various
disciplines including random variable, image processing, signal analysis, data compression,
and process identi"cation, etc. The widespread applications of POD methods enable the
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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POD to be a popular tool in many "elds. For example, POD methods have been
successfully used in structural vibrations [1}7]. A summary of the equivalence of the three
POD methods, the Karhunen}Loève decomposition (KLD), the principal component
analysis (PCA), and the singular value decomposition (SVD), has been made and the
connections among the three methods have been demonstrated in reference [8]. In this
paper, applications of the three POD methods to the microelectromechanical systems
(MEMS) model reduction are reviewed "rst, then a neural-network-based method for
model reduction that combines robust generalized Hebbian algorithm (RGHA) with
Galerkin procedure to perform the dynamic simulation and analysis of non-linear MEMS
is proposed and examined. Comparative experiments are made and the results show that
the proposed method improves the performances of the existing PCA algorithm based on
neural networks when noises are present.
The development of increasingly complex MEMS demands sophisticated simulation

techniques for design and optimization [9]. This simulation and modelling are usually
presented with non-linear partial di!erential equations (PDE) because MEMS devices
typically involve multiple coupled energy domains and media and there exist inherent
non-linearities of electrostatic actuation forces and geometric non-linearities caused by
large deformation. There are techniques such as "nite element methods (FEM) or "nite
di!erence methods (FDM) to convert continuous dynamic non-linear systems with in"nite
number of degrees of freedom to discrete "nite dimensional models. But the resulting
number of degrees of freedom is usually too large so that it is extremely computationally
intensive and time consuming for practical problems. Therefore, a major current goal of
simulation and modelling research is to develop e$cient methods of creating accurate
low-order dynamic models that capture most of the accuracy and #exibility of the original
PDE, or of the fully meshed dynamic FEM or FDM model [9, 10].
In recent years, several approaches of model reduction for dynamic simulations of

MEMS have been presented [9}20], including lumped-parameter techniques, linear modal
analysis techniques and Arnoldi-based model reduction approaches, etc., which are
reviewed in references [10, 11]. More recently, three POD methods including the singular
value decomposition (SVD), the Karhunen}Loève decomposition (KLD), and the principal
component analysis (PCA) using neural networks have been proposed to handle the model
reduction for MEMS respectively [10}13]. In these four papers, the authors demonstrate
how e$ciently the reduced-order dynamical models for micromechanical devices can be
constructed using data from a few runs of fully meshed numerical models such as those
created by the FEM or FDM, and how these low-order macro-models are generated by
extracting global basis functions from the fully meshed model runs in order to parameterize
solutions with far fewer degrees of freedom. Among the three approaches the "rst two
methods need some matrix computations in advance, such as the computation on the input
correlation matrix in the KLD. A matrix eigenvalue problem of large scale is required to be
solved and all eigenfunctions of the correlation matrix or some equivalent matrix from an
ensemble of signals have to be calculated in the SVD or KLD. Compared with these two
PODmodel reduction methods for dynamic simulations of MEMS, the PCAmethod using
neural networks does not need to compute the input correlation matrix in advance; it is
necessary to "nd only very few of the required basis functions. The neural-network-based
PCA method therefore possesses potential advantages when the measured data are large.
However, the three POD approaches dealt with only noise-free data in the model reduction
of MEMS. Since the POD methods have to process information from the real world, it
should have the ability to cope with noisy data. In this paper, we extend the
neural-network-based method of model reduction for MEMS to handle the noisy data by
using robust PCA neural networks. The ability of processing noisy data enables the
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proposed robust neural network method to be an ideal choice in the model reduction of
MEMS in real applications.

2. THE SYSTEM AND GOVERNING EQUATIONS

In this section, a doubly clamped micro-beam pulled in by the electrostatic actuation
force with squeezed gas-"lm damping e!ect is examined to demonstrate the model
reduction technique and the generation of the macro-model based on the robust PCA
neural network.
The cross-section of the micro-beam is shown in Figure 1 [21]. The device consists of

a deformable elastic beam microstructure that is electrostatically pulled in by an applied
voltage waveform. When a voltage < is applied on the top and bottom electrodes, the top
deformable micro-beam is pulled downwards due to the electrostatic force. At the same
time, the narrow air gap between the moving micro-beam and the substrate will generate
back pressure force on the micro-beam due to squeezed gas-"lm damping e!ect [22]. The
top micro-beam will reach an unstable point and pull-in onto the 0)5 �m dielectric layer
coated on the bottom substrate when the applied voltage attains the pull-in voltage. The
applied voltage is sensitive to the ambient pressure of the air thus structure can be used as
accelerometer [22] and pressure sensor [21].
The device shown in Figure 1 is a coupled domain system. In general, the micro-beam can

be modelled by the Euler beam equation with electrostatic actuation force, and the back
pressure force and be modelled by the non-linear Reynold' squeezed gas-"lm damping
equation [23] to become the following PDE:
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where E is the elastic modulus, I"Bh�/12 is the moment of inertia where B is the width of
the micro-beam and h is the thickness,¹ is the residual stress,K (x, t )"�/z is the Knudson
number where � is the mean-free path of the air and is equal to 0)064 �m, z (x, t) is the height
of the micro-beam above the substrate, !�

�
B<�/(2z�) is the electrostatic actuation force

where < is the applied voltage, �
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is the permittivity of free space and is equal to

8)854�10��� F/m, p(x, y, t) is the back pressure force caused by the squeezed gas-"lm
where an isothermal process is assumed, p
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is the ambient pressure and is equal to

1)013�10� Pa, � is the density and � is the air viscosity and is equal to 1)82�10�� kg/(m s).
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Figure 1. Doubly clamped micro-beam.
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3. MODEL REDUCTION BASED ON THE ROBUST PCA NEURAL NETWORK

Traditional FEM or FDM can be used for explicit dynamical simulations of PDE.
However, computational prototyping using full models to simulate non-linear PDE are
usually computationally very intensive and time consuming, making them di$cult to use
when a large number of simulations are needed. It has been demonstrated that a Galerkin
procedure employing the eigenvectors obtained from the GHA neural network can convert
the dynamic non-linear system to a model with a small number of degrees of freedom, while
capturing most of the accuracy and #exibility of the original system e$ciently [11]. The
principal components are the most important linear features of the random observation
vectors. The purpose of the PCA is to identify the dependent structure behind a multivariate
stochastic observation in order to obtain a compact description of it. Through the PCA
many variables can be represented by a few principal components, so the PCA can be
considered as a feature extraction technique. Performing the PCA on a set of multivariate
random data means computing the eigenvectors of its correlation matrix corresponding to
the largest eigenvalues, and the projection of the data over the eigenvectors to obtain
a number of principal components.
Since the pioneering work of Oja [24] on extracting the "rst principal component by

a linear neuron model, the issue of neural learning PCA has generated great interest
recently. A number of unsupervised learning algorithms for extracting multiple principal
components or their subspace have been proposed, usually developed from the variance
maximization or the mean-square error minimization [25}31]. Unlike the traditional
statistical eigenvector analysis algorithms, these neural-network-based approaches do not
require the computation of the input data covariance, which may increase signi"cantly with
the dimensionality of the training data. Furthermore, there is no need to evaluate all the
eigenvalues and eigenvectors if only the eigenvectors corresponding to the "rst several
signi"cant eigenvalues are required. In this paper we use the robust PCA algorithm
proposed in reference [31] to extract the principal eigenvectors of the correlation matrix
from an ensemble of signals. The algorithm is derived from the representation error
minimization, which is given by

w
���
(i )"w

�
(i)#�

�
y
�
(i ) f (e

�
(i)) (i"1, 2,2,M),

e
�
(i)"x

�
!

� ��	
�
�
�

y
�
( j )w

�
( j ) (i"1, 2,2,M), (3)

y
�
(i)"x�

�
w
�
(i ) (i"1, 2,2,M),

where w
�
(i ) is the weight vector of the ith neuron, e

�
(i) is the instantaneous representation

error vector, y
�
(i ) is the output of the ith neuron, �

�
is the gain parameter,M is the number

of the neurons in the output layer of the network, x
�
is the input data vector, and f ( ) ) is

a non-linear function. In general, the non-linear function f (t) adding to the error term in
equation (3) should subject to the following requirements: f (t) is a monotonically growing
function of t. For stability reasons, it is necessary to assume that f (t))0 for t(0 and
f (t )*0 for t'0, i.e., it is required that the growing of f (t) should be less than the linear
growing. The upper bound of the summation index I (i) represents the two di!erent cases of
the network models. In the standard symmetric case, I (i)"M, for all i"1, 2,2,M. In the
standard hierarchic case I (i)"i, then the optimal weight vector of the ith neuron de"nes
the robust counterpart of the ith principal eigenvector. In the standard hierarchic case and
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linear special case f (t)"t, equation (3) coincides exactly with the well-known generalized
Hebbian algorithm (GHA) proposed originally by Sanger [32],
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Equation (3) de"nes a generalization of the GHA algorithm. Considering that the algorithm
using equation (3) possesses the robustness for noise-injected data through the numerical
simulation, we call equation (3) the robust GHA (RGHA).
Robustness theory is concerned with solving problems subject to model perturbation or

added noise. A robust algorithm could not only perform well under the assumed model, but
also produce a satisfactory result under the deviation of the assumed model. That is the
reason for choosing the RGHA to deal with the model reduction of MEMS with noisy data
in this paper.
In the present model reduction algorithm we use equation (3) of the RGHA to obtain the

eigenvectors (principal components) by iteratively training the neural network, where the
input vector x

�
is the snapshot described in the next section and the weight vectors w

�
(i ) is

the eigenvector which we seek for. It should be pointed out that in our experience the choice
of the gain parameter �

�
in equation (3) has a profound impact in the convergence speed of

the RGHA. In general �
�
should decrease with time such that
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In order to compare the simulation results in this paper with those obtained from reference
[11] using the GHA model we adopt the adaptive choice for �
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employed in reference [11],
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where 0(�)1 is a factor chosen by the user. Simulation results show that good
convergence can be obtained if � is chosen to be closer to 1.

4. GENERATING SNAPSHOTS AND THE MACRO-MODEL

We now describe how to obtain the ensemble of signals or snapshots from the numerical
solution of an original non-linear dynamic system. Firstly, the time-dependent de#ection
z(x, t) and pressure p (x, y, t) in equations (1) and (2) are simulated using the FDM technique.
For the system shown in Figure 1, the pull-in dynamics of the micro-beam at a series of
di!erent time are simulated using FDM for an ensemble of applied step voltage to obtain
the beam de#ection z
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) and the back air pressure p
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, y
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) ensemble. These

de#ection and back pressure ensemble are then used as snapshots, i.e., the ensemble of
signals for the GHA network to generate the eigenvectors. The ensemble of applied step
voltage is taken to be that of the operating range of the systems.
In order to simulate the system shown in Figure 1 using FDM, we discretize the Euler

beam equation (1) and Reynold equation (2) in space to generate an (M#1)�(N#1) mesh
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Figure 2. Finite di!erence mesh of the micro-beam.
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withM�N inner grids and 2M#2N#4 boundary grids as shown in Figure 2. The central
di!erence is used to discretize the spatial partial derivative operators in equations (1) and (2)
and the trapezoidal rule is adopted to discretize the integral operator. The state of three
unknowns z(x, t ), �z(x, t)/�t and p(x, y, t) is projected onto each grid point. This
discretization will transform equations (1) and (2) into a set of M�N#2M non-linear
ODE, and we can use the following state space to represent the unknowns on the grids:
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and they are integrated numerically by using the "fth-order Runge}Kutta method with the
following boundary conditions:
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and the initial conditions:
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The snapshots can be taken at varied or "xed time intervals during pull-in dynamics.
Since there is no distinct di!erence between transient and steady state for the system shown
in Figure 1, we take the snapshots at "xed time intervals in this paper. Using the
above-mentioned snapshots as inputs to the RGHA neural network, we can obtain the
eigenvectors of the input correlation matrix. It is noted that the inputs are centralized to
become mean-value free signals before the principal component is performed [8] and the
fact that the true eigenvectors are distorted by inclusion of the mean value is also reported
in reference [33].
Next, the Galerkin procedure which employs these eigenvectors as basis functions is

applied to the original non-linear governing PDE (1) and (2) to convert it to a macro-model
with a small number of ordinary di!erential equations (ODE).
Considering that the independent de#ection and pressure basis functions make the

Galerkin derivation simpler and also make sense the physics of the problem, we perform the



MODEL REDUCTION FOR MEMS 521
principal component extraction using the RGHA corresponding to the de#ection and
pressure respectively. Denoting the eigenvectors with respect to the de#ection as �


�
(x) and

those with respect to the pressure as ��
�
(x, y), we can represent the de#ection z(x, t ) and

pressure p (x, y, t) as a linear combination of the eigenvectors as follows:
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where z
�
is the initial gap between the deformable micro-beam and the substrate, p

�
is the

gap air ambient pressure, I and J are the numbers of basis vectors for the de#ection and
back pressure respectively. Substituting equations (10) and (11) into equations (1) and (2)
and applying the Galerkin procedure, we have
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where 

�
indicates the integration along the length of the micro-beam and 


�
indicates the

integration over the area of the micro-beam.
The above small set of coupled ODE (12) and (13) constitutes the macro-model with

global basis functions, which is the low-order dynamic simulation of the original non-linear
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PDE system, equations (1) and (2). Since this dynamic macro-model of ODE is generated by
Galerkin procedure employing the eigenvectors extracted from the RGHA network, the
resulting degrees of freedom is usually small. It is very e$cient to simulate the system
compared with the full model of FEM or FDM which contains large degrees of freedom.
The set of ODE (12) and (13) is integrated numerically in time by a "fth-order Runge}Kutta
method to simulate the dynamics of the system. The initial values for the system are as
follows:
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5. NUMERICAL RESULTS

We now present simulation results on the MEMS device shown in Figure 1 to
demonstrate the e$ciency and accuracy of the present model reduction technique using the
RGHA neural network. The features and dimension of the micro-beam are given in Table 1.
The snapshots generated for pressure and displacement based on runs of the FDM code for
an ensemble of two di!erent step voltages at <

�
"10 V and <

�
"16 V which are assumed

to be the device operating range under consideration. Based on numerical experiments,
a mesh size of 40�20 for the "nite di!erence simulation of the original non-linear equations
(1) and (2) is able to generate su$cient accuracy. The minimum step pull-in voltage for this
device is calculated at 8)87 V by the FDM code, which is matched to the experimental data
measured at 8)76 V [34]. Each 25 snapshots are taken at the "xed time interval from the
moment when each step voltage is applied till the pull-in happened. Then, in general, these
snapshots are used to generate the eigenvectors from the application of the POD methods.
The validity and suitability of the eigenvectors obtained using the GHA model as proper
shape functions have been demonstrated in reference [11]. The eigenvectors given by the
GHA and those obtained by the KLD are examined and compared. The two sets of
eigenvectors from these two di!erent methods are quite similar. The "rst two order
eigenvectors corresponding to the de#ection are plotted in Figure 3. The other eigenvectors
corresponding to the de#ection and pressure also possess such similarities. The Galerkin
TABLE 1

<alues of the features and geometric dimension for the micro-beam

Residual Beam's Knudsen's
Elastic stress density number Initial gap

modulus E [¹/(hB)] [�/(hB)] K"�/z Length l Width B Thickness h z
�

149GPa !3)7GPa 2330kg/m� +0)028 610�m 40 �m 2)2�m 2)3�m
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Figure 3. Comparison of the "rst two eigenvectors from KLD and GHA for noise-free snapshots.
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procedure uses these eigenvectors as the basis functions to generate the macro-model to
represent and simulate the pull-in dynamics.
In references [11, 13] it has been shown that the macro-model can be represented well

when only one de#ection basis vector and four back pressure basis vectors are chosen in the
simulations. It has been demonstrated that the macro-model is very #exible and e$cient to
simulate the system without regeneration of the macro-model even when the input voltage
wave spectrum is changed and the input voltages are far from the voltages used to create the
basis functions [11, 13]. However, all these results are obtained based on the assumption
that the data used to generate the eigenvectors have not been spoiled by noise. Currently,
little attention has been paid to this problem in MEMS model reduction literatures,
although the problem is essentially important for real applications. In practice, real data
often contain some noise, and usually it is not easy to separate the noise from the data set.
As will be shown by the experiments given in this paper, the noise signi"cantly deteriorates
the performances of the existing PCA algorithms.
One of the main purposes of this paper is to examine the in#uence of the measured noise

upon the data processing techniques based on the PCA neural network methods by
analyzing the e!ect of the noise on the eigenvectors obtained using the GHA and RGHA
models. Figure 4 shows the comparisons of the "rst two order eigenvectors corresponding
to the de#ection, where GHA-1 and GHA-2 represent the "rst and second order
eigenvectors obtained by using the GHA model based on the noise-free data, and GHA-N1
and GHA-N2 represent the "rst and second order eigenvectors obtained using the GHA
model based on the noise-injected data with a noise level of 0)005. The deterioration caused
by the noise can be observed from the "gure. For example, it can be seen that the deviation
from the true values and the destruction of the symmetry of the mode shape in the second
eigenvector obtained based on the noise-injected data are obvious. Since the PCA
algorithms have to process information from real world, they should have the ability to
cope with the noisy data or have the robustness when the noise exists. How to decrease the
in#uence of the noise upon the feature extraction by choosing a suitable data processing
technique is an important problem in many cases.
This paper would examine the robustness of the RGHA approach to the noise.

Comparative experiments are conducted between the two methods of GHA and RGHA.
The noise is added to the snapshots obtained using the FDM. The noise array with uniform
distribution is "rst scaled between the range of [!1, 1]. Considering the variation
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Figure 4. Comparison of the "rst two eigenvectors from GHA for noise-free and noise-injected snapshots.
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magnitude of the displacement of the micro-beam is among 10��, 10�� and 10��, the noise
scale is controlled within 0 to the magnitude of 10�� in this paper such that the
noise-injected displacement data do not have serious distortion to the original data.
In order to compare the results obtained from the noise-free data and the noise-injected

data, we de"ne the square error function
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as a criterion for the comparison, where q is the number of the components of the
eigenvector, N

�
is the component of the eigenvector obtained using the neural network

method based on noise-injected snapshots, S
�
is the component of the eigenvector obtained

using the KLD based on noise-free snapshots, andN
�
and S

�
are two selected typical values

from the aboveN
�
and S

�
(i"1, 2,2,q) respectively. In the above de"nition it is considered

that the eigenvectors obtained using the two di!erent methods may have di!erent signs.
The comparative experiments are implemented using the following two di!erent ways:
1. Comparisons using di+erent non-linear functions. In order to examine the e!ectiveness

of using the non-linear function in equation (3) to noise-injected data, besides the sigmoid
function which is used frequently in a number of neural network models, several other
non-linear functions listed in reference [35] are also used in the comparative experiments.
The non-linear functions employed in this paper are as follows:
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where f
�
(t) is the sigmoid function, � is a real coe$cient, and � is a parameter its value taken

as 1 in the simulations.
The square errors de"ned in equation (22) for the "rst eigenvectors obtained using the

GHA and the RGHA employing di!erent non-linear functions are calculated according to
di!erent noise levels of the noise-injected de#ection snapshots. Considering the randomness
of the noise-injected data, we calculate 10 times for each non-linear function and each noise
level and then take the statistic mean value as the results for the comparison. The
comparisons of the square errors obtained using the GHA with those obtained using the
RGHA employing di!erent non-linear functions versus noise are shown in Table 2, where
RGHA-i represents that the non-linear function f

�
(i"1, 2,2,6) is used in the RGHA

model. In the simulations 25 000 iteration steps are used in the training of the GHA and
RGHA neural networks, respectively, and the coe$cient � in the sigmoid function is taken
as 1)5. The comparative experiments show that the same results can be obtained by using
the GHA and RGHAmodels based on the noise-free data, which are not listed in the table.
However, the simulations for the noise-injected data are di!erent. From the table it can be
seen the results using the RGHA employing the sigmoid function are better than those using
the GHA, whereas the results using the RGHA employing other non-linear functions are
not better than those using the GHA, sometimes the results are even worse than those using
the GHA. From these simulation results some conclusions can be made. In general, it is not
true that the RGHA approach possesses the robustness to the noise for all kinds of
non-linear functions in equation (3). However, the RGHA algorithm using the sigmoid
function has the ability of decreasing the in#uence of the injected noise.
2. Comparisons using sigmoid function. Because of the robustness of the RGHA using the

sigmoid function to the injected noise, we use only the sigmoid function in the RGHAmodel
TABLE 2

Comparison of square errors using GHA with those using RGHA versus noise (%)

Noise GHA RGHA-1 RGHA-2 RGHA-3 RGHA-4 RGHA-5 RGHA-6

0)00 3)06E!14 6)63E!15 3)06E!14 3)06E!14 1)5E!14 1)5E!14 1)17E!14
0)05 8)41E!09 8)38E!09 8)00E!09 8)36E!09 9)70E!09 9)70E!09 8)51E!09
0)10 3)11E!08 3)73E!08 3)26E!08 3)83E!08 3)78E!09 3)78E!08 3)41E!08
0)15 7)34E!08 7)03E!08 6)47E!08 8)23E!08 8)60E!08 8)60E!08 9)02E!08
0.20 1)41E!07 1)39E!07 1)51E!07 1)34E!07 1)38E!07 1)38E!07 1)37E!07
0)25 2)42E!07 2)18E!07 2)24E!07 1)93E!07 2)32E!07 2)32E!07 2)32E!07
0)30 3)25E!07 3)11E!07 3)19E!07 3)67E!07 3)61E!07 3)61E!07 3)61E!07
0)35 4)63E!07 4)28E!07 4)31E!07 5)04E!07 5)06E!07 5)06E!07 4)81E!07
0)40 5)46E!07 5)35E!07 5)64E!07 5)51E!07 6)44E!07 6)44E!07 6)71E!07
0)45 7)01E!07 6)46E!07 7)40E!07 7)01E!07 8)28E!07 8)28E!07 6)48E!07
0)50 8)70E!07 8)56E!07 9)22E!07 1)04E!06 1)00E!06 1)00E!06 9)13E!07
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in the following comparative experiments. We "rst examine the e!ectiveness of using the
sigmoid function to the noisy data. Numerical experiments for the MEMS model reduction
using the GHA neural network method have shown that the steps of the training to the
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network have signi"cant in#uence on the accuracy of the results. Simulations on the RGHA
network using the sigmoid function show that the RGHA model is superior to the GHA
model in dealing with the noisy data when the learning steps are changed. Figure 5 shows
the comparison of the errors de"ned in equation (22) multiplied by ��

�
�
S�
�
, where the

errors are the statistic mean values from the 10 times calculations for each noise level, the
coe$cient of the sigmoid function is 1)5 and the learning steps are 250 000. From a number
of numerical simulations it can be seen that compared with the GHA model, the RGHA
method has a relative stability of robustness to the noisy data when the noise level is larger
than 0)0025. The training convergence is examined for the GHA and RGHA models to the
di!erent noise level, which shows that the RGHA approach is superior to the GHA
obviously in both robustness and stability.
Figures 6(a)}6(g) show the errors de"ned in equation (22) multiplied by ��

�
�
S�
�
versus

the learning steps of the GHA and RGHA used to extract the "rst eigenvector of the
de#ection from the noise-injected snapshots with noise level of 0)003 respectively. The
segmented plotting and the local enlargement of the "gures enables one to observe clearly
the change of the errors versus the learning steps. From Figures 6(a)}6(g) it can be seen that
the speed of convergence of the RGHA possesses obvious superiority to that of the GHA.
This feature is even more prominent in the initial stages of the training. For example, the
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square error reaches the order of magnitude 10�
 when 300 iteration steps are completed
using the RGHA, whereas it needs 1600 iteration steps for the RGHA to reach the same
square error. It shows that for the same accuracy of convergence the RGHA needs fewer
iteration steps than the GHA does. Therefore, the RGHA possesses the feature of fast
convergence compared with the GHA. From the simulations it can also be seen that in the
middle and later stages the error curves obtained using the GHA have considerable
#uctuations, whereas the error curves of the RGHA are relatively smooth. It shows that the
RGHA model is superior in the stability of convergence to the GHA model.
It has been shown that for the de#ection simulation, the "rst eigenvector �


�
(x) captured

99)99% of the system characteristics while it takes at least four "rst eigenvectors for the
back pressure ��

�
(x) to capture the same level in the back pressure simulation [13]. For this

reason we choose only one de#ection basis vector and four back pressure basis vectors in
the simulations as chosen in reference [11], which ensures that the macro-model can be
represented well.
The numerical results are given and described below. We de"ne the mean square error

between the result using the macro-model and that using the FDM as follows:

MSE"

1

m

�
�
�
�

(z
��
(x

�
, t

�
)!z

���
(x

�
, t

�
))�, (23)

where x
�
denotes the centre point of the micro-beam, t

�
the sampled time instant, z

��
the

simulation result using the macro-model, z
���

the "nite di!erence solution of the original
non-linear PDE (1) and (2), and m the number of the sampled time series. We "rst examine
the simulation results obtained using the RGHA to the noise-free data. The same results as
those by using the GHA model [11] can be obtained by using the RGHA model to the
noise-free data, which shows the #exibility of the proposed approach. For example, the
mean square error is very small when the system is applied with step voltages which are in
the range to create the basis functions. Good accuracies can also be obtained when the
voltages far from those used to create the basis functions are employed, and the input
voltage wave spectra are changed, for example, when the sinusoidal and ramp input
voltages are used.
In order to further examine the #exibility and e$ciency of the proposed method in the

representation and simulation of the original non-linear PDE, a number of simulations
using the RGHA method to the noise-injected data are performed. Figure 7 shows
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a comparison of the de#ection of the centre point of the micro-beam between the FDM
approximation of the original non-linear PDE and the macro-model (MM) representation
when the system is applied with step voltage 10)25 V. The de#ection using the FDM is
obtained from the noise-free data and that using the RGHA is obtained from the
noise-injected snapshots with noise level of 0)003. Figure 8 shows the mean square error of
the macro-model simulation compared with the "nite di!erence solution. Figure 9 shows
the simulation for a sinusoidal input voltage with magnitude of 14 V at frequency of 10 kHz,
where the de#ection using the FDM is obtained from the noise-free data and that using the
RGHA is obtained from the noise-injected snapshots with noise level of 0)003. Figure 10
shows the mean square error. From the "gures it can be seen that for the situations of the
noise-free data and the noise-injected data with small noise levels, we can obtain very good
accuracy. When the noise level exceeds 0)001, theMSE has an obvious increase. However,
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for the noise level of 0)003, good results can also be obtained. The satisfactory simulation
results can also be observed in the situations that the input voltage wave spectrum is
changed to the ramp type and the voltages far from those used to create the basis functions
are employed.

6. DISCUSSIONS AND CONCLUSIONS

In this paper, we summarized the applications of the POD methods to model reduction
for MEMS and proposed a model reduction approach for the simulation of the non-linear
dynamics of MEMS based on a robust PCA neural network model. The macro-model
generated by using the eigenvectors extracted from the RGHA neural network as basis
functions in Galerkin procedure has shown its #exibility and e$ciency in the representation
and simulation of the original non-linear PDE.We demonstrated that the proposed method
reduces the original non-linear PDE to a macro-model with small number of degrees of
freedom, and the macro-model can represent and simulate the original systems almost
exactly using the noise-free data. Besides these, this method does not need to compute the
input correlation matrix in advance, it needs to "nd only very few of the required basis
functions. This enables the method to possess potential advantages when the measured data
are large. As for the computation time e$ciency, when Silicon Graphics Origin 2000 is used,
it takes more than 30 min to obtain the pull-in time by using FDMwith 40�20 mesh when
the input step voltage is 10)25V. In comparison, it requires only few tens of seconds to
simulate the pull-in dynamics by the macro-model with an acceptable precision when one
basis function for de#ection and four basis functions for back pressure are employed for the
noise-free data. Simulations are given to show the performances of the proposed method in
comparison with the existing GHA neural network method. Comparative experiments
show that the proposed RGHA neural network model using the sigmoid function has
a number of numerical advantages over the existing methods, such as stability and
robustness to noise-injected data and the fast convergence of iterations in the training
stages, etc. The simulation results show that the present model reduction technique
provides another feasible way for system designers to design and optimize MEMS
e$ciently and e!ectively.
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